Plasticity of Listeriolysin O Pores and its Regulation by pH and Unique Histidine

نویسندگان

  • Marjetka Podobnik
  • Marta Marchioretto
  • Manuela Zanetti
  • Andrej Bavdek
  • Matic Kisovec
  • Miša Mojca Cajnko
  • Lorenzo Lunelli
  • Mauro Dalla Serra
  • Gregor Anderluh
چکیده

Pore formation of cellular membranes is an ancient mechanism of bacterial pathogenesis that allows efficient damaging of target cells. Several mechanisms have been described, however, relatively little is known about the assembly and properties of pores. Listeriolysin O (LLO) is a pH-regulated cholesterol-dependent cytolysin from the intracellular pathogen Listeria monocytogenes, which forms transmembrane β-barrel pores. Here we report that the assembly of LLO pores is rapid and efficient irrespective of pH. While pore diameters at the membrane surface are comparable at either pH 5.5 or 7.4, the distribution of pore conductances is significantly pH-dependent. This is directed by the unique residue H311, which is also important for the conformational stability of the LLO monomer and the rate of pore formation. The functional pores exhibit variations in height profiles and can reconfigure significantly by merging to other full pores or arcs. Our results indicate significant plasticity of large β-barrel pores, controlled by environmental cues like pH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin

Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...

متن کامل

Engineering a pH responsive pore forming protein

Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that w...

متن کامل

Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells.

The Listeria monocytogenes hemolysin listeriolysin O (LLO) plays a major role in mediating the escape of L. monocytogenes from a vacuolar compartment. In a previous report, it was shown that Bacillus subtilis expressing LLO could escape from a host vacuolar compartment and grow in the cytoplasm (J. Bielecki, P. Youngman, P. Connelly, and D. A. Portnoy, Nature [London] 345:175-176, 1990). In the...

متن کامل

Molecular basis of listeriolysin O pH dependence.

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that is an essential virulence factor of Listeria monocytogenes. LLO pore-forming activity is pH-dependent; it is active at acidic pH (<6), but not at neutral pH. In contrast to other pH-dependent toxins, we have determined that LLO pore-forming activity is controlled by a rapid and irreversible denaturation of its structure at neutral ...

متن کامل

Lipid rafts clustering and signalling by listeriolysin O.

Listeriolysin O, the major virulent determinant of Listeria monocytogenes, is known for forming pores on cholesterol-rich membranes. In the present study, we reveal its other facet, rafts clustering. By immunofluorescence microscopy, we show that the glycosylphosphatidylinositol-anchored proteins CD14 and CD24, which normally exhibit uniform distribution on J774 cells, undergo clustering upon t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015